Number fields with class number congruent to 4 mod 8 and Hilbert's theorem 94
نویسندگان
چکیده
منابع مشابه
Ternary quadratic forms over number fields with small class number
We enumerate all positive definite ternary quadratic forms over number fields with class number at most 2. This is done by constructing all definite quaternion orders of type number at most 2 over number fields. Finally, we list all definite quaternion orders of ideal class number 1 or 2.
متن کاملNumber fields with large class groups
After a review of the quadratic case, a general problem about the existence of number fields of a fixed degree with extremely large class numbers is formulated. This problem is solved for abelian cubic fields. Then some conditional results proven elsewhere are discussed about totally real number fields of a fixed degree, each of whose normal closure has the symmetric group as Galois group.
متن کاملCM-fields with relative class number one
We will show that the normal CM-fields with relative class number one are of degrees ≤ 216. Moreover, if we assume the Generalized Riemann Hypothesis, then the normal CM-fields with relative class number one are of degrees ≤ 96, and the CM-fields with class number one are of degrees ≤ 104. By many authors all normal CM-fields of degrees ≤ 96 with class number one are known except for the possib...
متن کاملThe 4-class Group of Real Quadratic Number Fields
In this paper we give an elementary proof of results on the structure of 4-class groups of real quadratic number fields originally due to A. Scholz. In a second (and independent) section we strengthen C. Maire’s result that the 2-class field tower of a real quadratic number field is infinite if its ideal class group has 4-rank ≥ 4, using a technique due to F. Hajir.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1976
ISSN: 0022-314X
DOI: 10.1016/0022-314x(76)90004-4